Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 182, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38615283

RESUMO

BACKGROUND: Stem cell therapy is a promising therapeutic strategy. In a previous study, we evaluated tumorigenicity by the stereotactic transplantation of neural stem cells (NSCs) and embryonic stem cells (ESCs) from experimental mice. Twenty-eight days later, there was no evidence of tumor formation or long-term engraftment in the NSCs transplantation group. In contrast, the transplantation of ESCs caused tumor formation; this was due to their high proliferative capacity. Based on transcriptome sequencing, we found that a long intergenic non-coding RNA (named linc-NSC) with unknown structure and function was expressed at 1100-fold higher levels in NSCs than in ESCs. This finding suggested that linc-NSC is negatively correlated with stem cell pluripotency and tumor development, but positively correlated with neurogenesis. In the present study, we investigated the specific role of linc-NSC in NSCs/ESCs in tumor formation and neurogenesis. METHODS: Whole transcriptome profiling by RNA sequencing and bioinformatics was used to predict lncRNAs that are widely associated with enhanced tumorigenicity. The expression of linc-NSC was assessed by quantitative real-time PCR. We also performed a number of in vitro methods, including cell proliferation assays, differentiation assays, immunofluorescence assays, flow cytometry, along with in vivo survival and immunofluorescence assays to investigate the impacts of linc-NSC on tumor formation and neurogenesis in NSCs and ESCs. RESULTS: Following the knockdown of linc-NSC in NSCs, NSCs cultured in vitro and those transplanted into the cortex of mice showed stronger survival ability (P < 0.0001), enhanced proliferation(P < 0.001), and reduced apoptosis (P < 0.05); the opposite results were observed when linc-NSC was overexpressed in ESCs. Furthermore, the overexpression of linc-NSC in ECSs induced enhanced apoptosis (P < 0.001) and differentiation (P < 0.01), inhibited tumorigenesis (P < 0.05) in vivo, and led to a reduction in tumor weight (P < 0.0001). CONCLUSIONS: Our analyses demonstrated that linc-NSC, a promising gene-edited target, may promote the differentiation of mouse NSCs and inhibit tumorigenesis in mouse ESCs. The knockdown of linc-NSC inhibited the apoptosis in NSCs both in vitro and in vivo, and prevented tumor formation, revealing a new dimension into the effect of lncRNA on low survival NSCs and providing a prospective gene manipulation target prior to transplantation. In parallel, the overexpression of linc-NSC induced apoptosis in ESCs both in vitro and in vivo and attenuated the tumorigenicity of ESCs in vivo, but did not completely prevent tumor formation.


Assuntos
Células-Tronco Embrionárias , Células-Tronco Neurais , Animais , Camundongos , Estudos Prospectivos , Diferenciação Celular/genética , Carcinogênese/genética , Transformação Celular Neoplásica , Apoptose/genética , Proliferação de Células/genética
3.
ACS Appl Mater Interfaces ; 15(25): 29876-29888, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37334941

RESUMO

Resistance to traditional antiepileptic drugs is a major challenge in chronic epilepsy treatment. MicroRNA-based gene therapy is a promising alternative but has demonstrated limited efficacy due to poor blood-brain barrier permeability, cellular uptake, and targeting efficiency. Adenosine is an endogenous antiseizure agent deficient in the epileptic brain due to elevated adenosine kinase (ADK) activity in reactive A1 astrocytes. We designed a nucleic acid nanoantiepileptic drug (tFNA-ADKASO@AS1) based on a tetrahedral framework nucleic acid (tFNA), carrying an antisense oligonucleotide targeting ADK (ADKASO) and A1 astrocyte-targeted peptide (AS1). This tFNA-ADKASO@AS1 construct effectively reduced brain ADK, increased brain adenosine, mitigated aberrant mossy fiber sprouting, and reduced the recurrent spontaneous epileptic spike frequency in a mouse model of chronic temporal lobe epilepsy. Further, the treatment did not induce any neurotoxicity or major organ damage. This work provides proof-of-concept for a novel antiepileptic drug delivery strategy and for endogenous adenosine as a promising target for gene-based modulation.


Assuntos
Epilepsia , Ácidos Nucleicos , Camundongos , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Astrócitos/metabolismo , Adenosina Quinase/genética , Adenosina Quinase/metabolismo , Ácidos Nucleicos/metabolismo , Epilepsia/tratamento farmacológico , Epilepsia/genética , Epilepsia/metabolismo , Adenosina/farmacologia
4.
Nutr Neurosci ; 26(1): 11-24, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34927571

RESUMO

OBJECTIVES: Parkinson's disease (PD) is the second most common neurodegenerative disease. Chlorogenic acid (CGA) is a polyphenolic substance derived from various medicinal plants. Although CGA is reported to have potential anti-PD effect, the beneficial effect and the underlying mechanism remain unclear. In this study, we aimed to further investigate the protective effect and clarify the mechanism of action of CGA in Caenorhabditis elegans (C. elegans) models of PD. METHODS: Measurements of a-synuclein aggregation, movement disorders, and lipid, ROS and malondialdehyde (MDA) contents were observed in NL5901 nematodes. Determinations of dopamine (DA) neuron degeneration, food perception, and ROS content were performed in 6-OHDA-exposed BZ555 nematodes. The autophagy activation of CGA was monitored using DA2123 and BC12921 nematodes. Meanwhile, RNAi technology was employed to knockdown the autophagy-related genes and investigate whether the anti-PD effect of CGA was associated with autophagy induction in C. elegans. RESULTS: CGA significantly reduced α-synuclein aggregation, improved motor disorders, restored lipid content, and decreased ROS and MDA contents in NL5901 nematodes. Meanwhile, CGA inhibited DA neuron-degeneration and improved food-sensing behavior in 6-OHDA-exposed BZ555 nematodes. In addition, CGA increased the number of GFP::LGG-1 foci in DA2123 nematodes and degraded p62 protein in BC12921 nematodes. Meanwhile, CGA up-regulated the expression of autophagy-related genes in NL5901 nematodes. Moreover, the anti-PD effect of CGA was closely related to autophagy induction via increasing the expression of autophagy-related genes, including unc-51, bec-1, vps-34, and lgg-1. CONCLUSIONS: The present study indicates that CGA exerts neuroprotective effect in C. elegans via autophagy induction.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Animais , Doença de Parkinson/metabolismo , Caenorhabditis elegans , Ácido Clorogênico/farmacologia , Ácido Clorogênico/metabolismo , Animais Geneticamente Modificados , Doenças Neurodegenerativas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Oxidopamina , Degeneração Neural , Autofagia , Lipídeos , Neurônios Dopaminérgicos , Modelos Animais de Doenças
5.
Sci Rep ; 12(1): 21035, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36471004

RESUMO

To confirm whether machine learning algorithms (MLA) can achieve an effective risk stratification of dying within 7 days after basal ganglia hemorrhage (BGH). We collected patients with BGH admitted to Sichuan Provincial People's Hospital between August 2005 and August 2021. We developed standard ML-supervised models and fusion models to assess the prognostic risk of patients with BGH and compared them with the classical logistic regression model. We also use the SHAP algorithm to provide clinical interpretability. 1383 patients with BGH were included and divided into the conservative treatment group (CTG) and surgical treatment group (STG). In CTG, the Stack model has the highest sensitivity (78.5%). In STG, Weight-Stack model achieves 58.6% sensitivity and 85.1% specificity, and XGBoost achieves 61.4% sensitivity and 82.4% specificity. The SHAP algorithm shows that the predicted preferred characteristics of the CTG are consciousness, hemorrhage volume, prehospital time, break into ventricles, brain herniation, intraoperative blood loss, and hsCRP were also added to the STG. XGBoost, Stack, and Weight-Stack models combined with easily available clinical data enable risk stratification of BGH patients with high performance. These ML classifiers could assist clinicians and families to identify risk states timely when emergency admission and offer medical care and nursing information.


Assuntos
Hemorragia dos Gânglios da Base , Aprendizado de Máquina , Humanos , Algoritmos , Modelos Logísticos , Medição de Risco
6.
ACS Appl Mater Interfaces ; 14(39): 44228-44238, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36149663

RESUMO

Alzheimer's disease is a neurodegenerative disease caused by excessive amyloid ß protein-induced neurotoxicity. However, drugs targeting amyloid ß protein production face many problems, such as the low utilization rate of drugs by cells and the difficulty of drugs in penetrating the blood-brain barrier. A tetrahedral framework nucleic acid is a new type of nanonucleic acid structure that functions as a therapy and drug carrier. Here, we synthesized a BACE1 aptamer-modified tetrahedral framework nucleic acid and tested its therapeutic effect on Alzheimer's disease in vitro and in vivo. Our results demonstrated that the tetrahedral framework nucleic acid could be used as a carrier to deliver the BACE1 aptamer to the brain to reduce the production of amyloid ß proteins. It also played an antiapoptotic role by reducing the production of reactive oxygen species. Thus, this nanomaterial is a potential drug for Alzheimer's disease.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Ácidos Nucleicos , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/uso terapêutico , Peptídeos beta-Amiloides/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/uso terapêutico , Modelos Animais de Doenças , Portadores de Fármacos/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Ácidos Nucleicos/uso terapêutico , Espécies Reativas de Oxigênio
7.
Inflamm Regen ; 42(1): 25, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35918778

RESUMO

BACKGROUND: NLRP3 inflammasome-mediated neuroinflammation plays a critical role in the pathogenesis and development of Alzheimer's disease (AD). Microglial autophagic degradation not only decreases the deposits of extracellular Aß fibrils but also inhibits the activation of NRLP3 inflammasome. Here, we aimed to identify the potent autophagy enhancers from Penthorum chinense Pursh (PCP) that alleviate the pathology of AD via inhibiting the NLRP3 inflammasome. METHODS: At first, autophagic activity-guided isolation was performed to identify the autophagy enhancers in PCP. Secondly, the autophagy effect was monitored by detecting LC3 protein expression using Western blotting and the average number of GFP-LC3 puncta per microglial cell using confocal microscopy. Then, the activation of NLRP3 inflammasome was measured by detecting the protein expression and transfected fluorescence intensity of NLRP3, ASC, and caspase-1, as well as the secretion of proinflammatory cytokines. Finally, the behavioral performance was evaluated by measuring the paralysis in C. elegans, and the cognitive function was tested by Morris water maze (MWM) in APP/PS1 mice. RESULTS: Four ellagitannin flavonoids, including pinocembrin-7-O-[4″,6″-hexahydroxydiphenoyl]-glucoside (PHG), pinocembrin-7-O-[3″-O-galloyl-4″,6″-hexahydroxydiphenoyl]-glucoside (PGHG), thonningianin A (TA), and thonningianin B (TB), were identified to be autophagy enhancers in PCP. Among these, TA exhibited the strongest autophagy induction effect, and the mechanistic study demonstrated that TA activated autophagy via the AMPK/ULK1 and Raf/MEK/ERK signaling pathways. In addition, TA effectively promoted the autophagic degradation of NLRP3 inflammasome in Aß(1-42)-induced microglial cells and ameliorated neuronal damage via autophagy induction. In vivo, TA activated autophagy and improved behavioral symptoms in C. elegans. Furthermore, TA might penetrate the blood-brain barrier and could improve cognitive function and ameliorate the Aß pathology and the NLRP3 inflammasome-mediated neuroinflammation via the AMPK/ULK1 and Raf/MEK/ERK signaling pathways in APP/PS1 mice. CONCLUSION: We identified TA as a potent microglial autophagy enhancer in PCP that promotes the autophagic degradation of the NLRP3 inflammasome to alleviate the pathology of AD via the AMPK/ULK1 and Raf/MEK/ERK signaling pathways, which provides novel insights for TA in the treatment of AD.

8.
Acta Pharm Sin B ; 12(4): 1723-1739, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35847494

RESUMO

Discovery of drugs rapidly and effectively is an important aspect for Alzheimer's disease (AD). In this study, a novel high-throughput screening (HTS) method aims at screening the small-molecules with amyloid-ß (Aß) binding affinity from natural medicines, based on the combinational use of biolayer interferometry (BLI) and ultra-high-performance liquid chromatography coupled with diode-array detector and quadrupole/time-of-flight tandem mass spectrometry (UHPLC-DAD-Q/TOF-MS/MS) has been firstly developed. Briefly, the components in natural medicines disassociated from biotinylated Aß were collected to analyze their potential Aß binding affinity by UHPLC-DAD-Q/TOF-MS/MS. Here, baicalein was confirmed to exhibit the highest binding affinity with Aß in Scutellaria baicalensis. Moreover, polyporenic acid C (PPAC), dehydrotumulosic acid (DTA), and tumulosic acid (TA) in Kai-Xin-San (KXS) were also identified as potent Aß inhibitors. Further bioactivity validations indicated that these compounds could inhibit Aß fibrillation, improve the viability in Aß-induced PC-12 cells, and decrease the Aß content and improve the behavioral ability in Caenorhabditis elegans. The molecular docking results confirmed that PPAC, DTA, and TA possessed good binding properties with Aß. Collectively, the present study has provided a novel and effective HTS method for the identification of natural inhibitors on Aß fibrillation, which may accelerate the process on anti-AD drugs discovery and development.

9.
Drug Des Devel Ther ; 16: 1931-1945, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35762015

RESUMO

Purpose: Anoectochilus roxburghii (Wall.) Lindl. polysaccharides (ARPs) have been reported to exhibit multiple pharmacological activities including anti-inflammatory and anti-hyperglycemia. This study aims to investigate the effect of ARPs on cognitive dysfunction induced by high fat diet (HFD). Methods: Six-week-old male mice were treated with ARPs by dietary supplementation for 14 weeks. The effect of ARPs on cognitive function was determined by assessing the changes in spatial learning and memory ability, neurotrophic factors in hippocampus, inflammatory parameters, intestinal barrier integrity, and gut microbiota. Results: ARPs supplementation can effectively ameliorate cognitive dysfunction, decrease the phosphorylation levels of Tau protein in hippocampus. Meanwhile, the increased body weight, plasma glucose, total cholesterol, inflammatory factors induced by HFD were abolished by ARPs treatment. Furthermore, ARPs treatment restored the intestinal epithelial barrier as evidenced by upregulation of intestinal tight junction proteins. Additionally, ARPs supplementation significantly decreased the relative abundance of several bacteria genus such as Parabacteroides, which may play regulatory roles in cognitive function. Conclusion: These results suggest that ARPs might be a promising strategy for the treatment of cognitive dysfunction induced by HFD. Mechanistically, alleviation of cognitive dysfunction by ARPs might be associated with the "gut-brain" axis.


Assuntos
Disfunção Cognitiva , Orchidaceae , Animais , Encéfalo , Disfunção Cognitiva/tratamento farmacológico , Dieta Hiperlipídica , Suplementos Nutricionais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico
10.
Free Radic Biol Med ; 179: 76-94, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34933095

RESUMO

Activation of the NLRP3 inflammasome and its mediated neuroinflammation are implicated in neurodegenerative diseases, while mitophagy negatively regulates NLRP3 inflammasome activation. SHP-2, a protein-tyrosine phosphatase, is critical for NLRP3 inflammasome regulation and inflammatory responses. In this study, we investigated whether triterpenoid saponins in Radix Polygalae inhibit the NLRP3 inflammasome via mitophagy induction. First, we isolated the active fraction (polygala saponins (PSS)) and identified 17 saponins by ultra-performance liquid chromatography coupled with diode-array detection and tandem quadrupole time-of-flight mass spectrometry (UHPLC-DAD-Q/TOF-MS). In microglial BV-2 cells, PSS induced mitophagy as evidenced by increased co-localization of LC3 and mitochondria, as well as an increased number of autophagic vacuoles surrounding the mitochondria. Furthermore, the mechanistic study found that PSS activated the AMPK/mTOR and PINK1/parkin signaling pathways via the upregulation of SHP-2. In Aß(1-42)-, A53T-α-synuclein-, or Q74-induced BV-2 cells, PSS significantly inhibited NLRP3 inflammasome activation, which was attenuated by bafilomycin A1 (an autophagy inhibitor) and SHP099 (an SHP-2 inhibitor). In addition, the co-localization of LC3 and ASC revealed that PSS promoted the autophagic degradation of the NLRP3 inflammasome. Moreover, PSS decreased apoptosis in conditioned medium-induced PC-12 cells. In APP/PS1 mice, PSS improved cognitive function, ameliorated Aß pathology, and inhibited neuronal death. Collectively, the present study, for the first time, shows that PSS inhibit the NLRP3 inflammasome via SHP-2-mediated mitophagy in vitro and in vivo, which strongly suggests the therapeutic potential of PSS in various neurodegenerative diseases.


Assuntos
Polygala , Saponinas , Animais , Inflamassomos , Camundongos , Mitofagia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Doenças Neuroinflamatórias , Saponinas/farmacologia
11.
BMC Pharmacol Toxicol ; 22(1): 45, 2021 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-34274011

RESUMO

BACKGROUND: Abnormally elevated xanthine oxidase (XO) activity has been verified to cause various pathological processes, such as gout, oxidative stress injury and metabolic syndrome. Thus, XO activators may exhibit above potential toxicological properties. Plumbagin (PLB) is an important active compound in traditional Chinese medicine (TCM), while its obvious toxic effects have been reported, including diarrhea, skin rashes and hepatic toxicity. However, the potential toxicity associated with enhancement of XO activity has not been fully illuminated so far. METHODS: The present study investigated the effect of PLB on XO activity by culturing mouse liver S9 (MLS9), human liver S9 (HLS9), XO monoenzyme system with PLB and xanthine. Then, the molecular docking and biolayer interferometry analysis were adopted to study the binding properties between PLB and XO. Finally, the in vivo acceleration effect also investigated by injected intraperitoneally PLB to KM mice for 3 days. RESULTS: PLB could obviously accelerate xanthine oxidation in the above three incubation systems. Both the Vmax values and intrinsic clearance values (CLint, Vmax/Km) of XO in the three incubation systems increased along with elevated PLB concentration. In addition, the molecular docking study and label-free biolayer interferometry assay displayed that PLB was well bound to XO. In addition, the in vivo results showed that PLB (2 and 10 mg/kg) significantly increased serum uric acid levels and enhanced serum XO activity in mice. CONCLUSION: In summary, this study outlines a potential source of toxicity for PLB due to the powerful enhancement of XO activity, which may provide the crucial reminding for the PLB-containing preparation development and clinical application.


Assuntos
Naftoquinonas/farmacologia , Xantina Oxidase/metabolismo , Animais , Feminino , Humanos , Fígado/enzimologia , Masculino , Camundongos , Simulação de Acoplamento Molecular , Naftoquinonas/química , Oxirredução , Xantina/química , Xantina/metabolismo , Xantina Oxidase/química
13.
Phytother Res ; 35(2): 954-973, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32893437

RESUMO

Blood-brain barrier (BBB) dysfunction has been implicated in Alzheimer's disease (AD) and is closely linked to the release of proinflammatory cytokines in brain capillary endothelial cells. We have previously reported that lychee seed polyphenols (LSP) exerted anti-neuroinflammatory effect. In this study, we aimed to explore the protective effect of LSP on BBB integrity. The monolayer permeability of bEnd.3 cells, and the mRNA level and protein expression of tight junction proteins (TJs), including Claudin 5, Occludin, and ZO-1, were examined. In addition, the inhibition of Aß(25-35)-induced NLRP3 inflammasome activation, and the autophagy induced by LSP were investigated by detecting the expression of NLRP3, caspase-1, ASC, LC3, AMPK, mTOR, and ULK1. Furthermore, the cognitive function and the expression of TJs, NLRP3, caspase-1, IL-1ß, and p62 were determined in APP/PS1 mice. The results showed that LSP significantly decreased the monolayer permeability and inhibited the NLRP3 inflammasome in Aß(25-35)-induced bEnd3 cells. In addition, LSP induced autophagy via the AMPK/mTOR/ULK1 pathway in bEnd.3 cells, and improved the spatial learning and memory function, increased the TJs expression, and inhibited the expression of NLRP3, caspase-1, IL-1ß, and p62 in APP/PS1 mice. Therefore, LSP protects BBB integrity in AD through inhibiting Aß(25-35)-induced NLRP3 inflammasome activation via the AMPK/mTOR/ULK1-mediated autophagy.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Doença de Alzheimer/tratamento farmacológico , Autofagia/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Inflamassomos/efeitos dos fármacos , Litchi/química , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Polifenóis/uso terapêutico , Sementes/química , Animais , Masculino , Camundongos , Camundongos Transgênicos , Polifenóis/farmacologia , Transfecção
14.
Ageing Res Rev ; 65: 101202, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33161129

RESUMO

Neuroinflammation is considered as a detrimental factor in neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), etc. Nucleotide-binding oligomerization domain-, leucine-rich repeat- and pyrin domain-containing 3 (NLRP3), the most well-studied inflammasome, is abundantly expressed in microglia and has gained considerable attention. Misfolded proteins are characterized as the common hallmarks of neurodegenerative diseases due to not only their induced neuronal toxicity but also their effects in over-activating microglia and the NLRP3 inflammasome. The activated NLRP3 inflammasome aggravates the pathology and accelerates the progression of neurodegenerative diseases. Emerging evidence indicates that microglial autophagy plays an important role in the maintenance of brain homeostasis and the negative regulation of NLRP3 inflammasome-mediated neuroinflammation. The excessive activation of NLRP3 inflammasome impairs microglial autophagy and further aggravates the pathogenesis of neurodegenerative diseases. In this review article, we summarize and discuss the NLRP3 inflammasome and its specific inhibitors in microglia. The crucial role of microglial autophagy and its inducers in the removal of misfolded proteins, the clearance of damaged mitochondria and reactive oxygen species (ROS), and the degradation of the NLRP3 inflammasome or its components in neurodegenerative diseases are summarized. Understanding the underlying mechanisms behind the sex differences in NLRP3 inflammasome-mediated neurodegenerative diseases will help researchers to develop more targeted therapies and increase our diagnostic and prognostic abilities. In addition, the superiority of the combined use of microglial autophagy inducers with the specific inhibitors of the NLRP3 inflammasome in the inhibition of NLRP3 inflammasome-mediated neuroinflammation requires further preclinical and clinical validations in the future.


Assuntos
Inflamassomos , Doenças Neurodegenerativas , Autofagia , Feminino , Humanos , Masculino , Microglia , Proteína 3 que Contém Domínio de Pirina da Família NLR
15.
Biomed Pharmacother ; 130: 110575, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32768883

RESUMO

Emerging evidence indicates that the enhancement of microglial autophagy inhibits the NLRP3 inflammasome mediated neuroinflammation in Alzheimer's disease (AD). Meanwhile, low density lipoprotein receptor-related protein 1 (LRP1) highly expressed in microglia is able to negatively regulate neuroinflammation and positively regulate autophagy. In addition, we have previously reported that an active lychee seed fraction enriching polyphenol (LSP) exhibits anti-neuroinflammation in Aß-induced BV-2 cells. However, its molecular mechanism of action is still unclear. In this study, we aim to investigate whether LSP inhibits the NLRP3 inflammasome mediated neuroinflammation and clarify its molecular mechanism in Aß-induced BV-2 cells and APP/PS1 mice. The results showed that LSP dose- and time-dependently activated autophagy by increasing the expression of Beclin 1 and LC3II in BV-2 cells, which was regulated by the upregulation of LRP1 and its mediated AMPK signaling pathway. In addition, both the Western blotting and fluorescence microscopic results demonstrated that LSP could significantly suppress the activation of NLRP3 inflammasome by inhibiting the expression of NLRP3, ASC, the cleavage of caspase-1, and the release of IL-1ß in Aß(1-42)-induced BV-2 cells. In addition, the siRNA LRP1 successfully abolished the effect of LSP on the activation of AMPK and its mediated autophagy, as well as the inhibition of NLRP3 inflammasome. Furthermore, LSP rescued PC-12 cells which were induced by the conditioned medium from Aß(1-42)-treated BV-2 cells. Moreover, LSP improved the cognitive function and inhibited the NLRP3 inflammasome in APP/PS1 mice. Taken together, LSP inhibited the NLRP3 inflammasome-mediated neuroinflammation in the in vitro and in vivo models of AD, which was closely associated with the LRP1/AMPK-mediated autophagy. Thus, the findings from this study further provide evidences for LSP serving as a potential drug for the treatment of AD in the future.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Peptídeos beta-Amiloides , Inflamassomos/antagonistas & inibidores , Litchi , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos , Polifenóis/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Inflamassomos/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , RNA Interferente Pequeno , Ratos , Sementes
16.
Front Pharmacol ; 11: 116, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32158393

RESUMO

The pathogenesis of Huntington's disease (HD), an inherited progressive neurodegenerative disease, is highly associated with the cytotoxicity-inducing mutant huntingtin (mHtt) protein. Emerging evidence indicates that autophagy plays a pivotal role in degrading aggregated proteins such as mHtt to enhance neuronal viability. In this study, by employing preparative high-performance liquid chromatography (pre-HPLC), ultra-high performance liquid chromatography diode-array-detector quadrupole time-of-flight mass spectrometry (UHPLC-DAD-Q-TOF-MS) and nuclear magnetic resonance (NMR), three escins, escin IA (EA), escin IB (EB) and isoescin IA (IEA), were isolated and identified from the seed of Aesculus chinensis Bge. (ACB). After EGFP-HTT74-overexpressing HT22 cells were treated with EA, EB and IEA at safe concentrations, the clearance of mHtt and mHtt-induced apoptosis were investigated by Western blot, immunofluorescence microscopy and flow cytometry methods. In addition, the autophagy induced by these escins in HT22 cells was monitored by detecting GFP-LC3 puncta, P62 and LC3 protein expression. The results showed that EA, EB and IEA could significantly decrease mHtt levels and inhibit its induced apoptosis in HT22 cells. In addition, these three saponins induced autophagic flux by increasing the ratio of RFP-LC3 to GFP-LC3, and by decreasing P62 expression. Among the tested escins, EB displayed the best autophagy induction, which was regulated via both the mTOR and ERK signaling pathways. Furthermore, the degradation of mHtt and the commensurate decrease in its cytotoxic effects by EA, EB and IEA were demonstrated to be closely associated with autophagy induction, which depended on ATG7. In conclusion, we are the first to report that the escins, including EA, EB and IEA are novel autophagy inducers that degrade mHtt and inhibit mHtt-induced apoptosis in vitro and in vivo. As a result of these findings, the triterpenoid saponins in ACB might be considered to be promising candidates for the treatment of HD in the future.

17.
J Ethnopharmacol ; 251: 112548, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-31917277

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Lychee seed, the seed of Litchi chinensis Sonn. is one of the commonly used in traditional Chinese medicine (TCM). It possesses many pharmacological effects such as blood glucose and lipid-lowering effects, liver protection, and antioxidation. Our preliminary studies have proven that an active fraction derived from lychee seed (LSF) can significantly decrease the blood glucose level, inhibit amyloid-ß (Aß) fibril formation and Tau hyperphosphorylation, and improve the cognitive function and behavior of Alzheimer's disease (AD) model rats. AIM OF THE STUDY: The aim of this study was to identify the main active components in LSF that can inhibit the hyperphosphorylation of Tau through improving insulin resistance (IR) in dexamethasone (DXM)-induced HepG2 and HT22 cells. MATERIALS AND METHODS: The isolation was guided by the bioactivity evaluation of the improvement effect of IR in HepG2 and HT22 cells. The mRNA and protein expressions of IRS-1, PI3K, Akt, GSK-3ß, and Tau were measured by RT-PCR, Western blotting, and immunofluorescence methods, respectively. RESULTS: After extraction, isolation, and elucidation using chromatography and spectrum technologies, three polyphenols including catechin, procyanidin A1 and procyanidin A2 were identified from fractions 3, 5, and 9 derived from LSF. These polyphenols inhibit hyperphosphorylated Tau via the up-regulation of IRS-1/PI3K/Akt and down-regulation of GSK-3ß. Molecular docking result further demonstrate that these polyphenols exhibit good binding property with insulin receptor. CONCLUSIONS: catechin, procyanidin A1, and procyanidin A2 are the main components in LSF that inhibit Tau hyperphosphorylation through improving IR via the IRS-1/PI3K/Akt/GSK-3ß pathway. Therefore, the findings in the current study provide novel insight into the anti-AD mechanism of the components in LSF derived from lychee seed, which is valuable for the further development of a novel drug or nutrient supplement for the prevention and treatment of AD.


Assuntos
Resistência à Insulina , Litchi , Polifenóis/farmacologia , Proteínas tau/antagonistas & inibidores , Doença de Alzheimer , Animais , Linhagem Celular , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sementes , Proteínas tau/genética , Proteínas tau/metabolismo
18.
Cancers (Basel) ; 12(1)2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31941010

RESUMO

Trillium tschonoskii Maxim (TTM), a traditional Chinese medicine, has been demonstrated to have a potent anti-tumor effect. Recently, polyphyllin VI (PPVI), a main saponin isolated from TTM, was reported by us to significantly suppress the proliferation of non-small cell lung cancer (NSCLC) via the induction of apoptosis and autophagy in vitro and in vivo. In this study, we further found that the NLRP3 inflammasome was activated in PPVI administrated A549-bearing athymic nude mice. As is known to us, pyroptosis is an inflammatory form of caspase-1-dependent programmed cell death that plays an important role in cancer. By using A549 and H1299 cells, the in vitro effect and action mechanism by which PPVI induces activation of the NLRP3 inflammasome in NSCLC were investigated. The anti-proliferative effect of PPVI in A549 and H1299 cells was firstly measured and validated by MTT assay. The activation of the NLRP3 inflammasome was detected by using Hoechst33324/PI staining, flow cytometry analysis and real-time live cell imaging methods. We found that PPVI significantly increased the percentage of cells with PI signal in A549 and H1299, and the dynamic change in cell morphology and the process of cell death of A549 cells indicated that PPVI induced an apoptosis-to-pyroptosis switch, and, ultimately, lytic cell death. In addition, belnacasan (VX-765), an inhibitor of caspase-1, could remarkably decrease the pyroptotic cell death of PPVI-treated A549 and H1299 cells. Moreover, by detecting the expression of NLRP3, ASC, caspase-1, IL-1ß, IL-18 and GSDMD in A549 and h1299 cells using Western blotting, immunofluorescence imaging and flow cytometric analysis, measuring the caspase-1 activity using colorimetric assay, and quantifying the cytokines level of IL-1ß and IL-18 using ELISA, the NLRP3 inflammasome was found to be activated in a dose manner, while VX-765 and necrosulfonamide (NSA), an inhibitor of GSDMD, could inhibit PPVI-induced activation of the NLRP3 inflammasome. Furthermore, the mechanism study found that PPVI could activate the NF-κB signaling pathway via increasing reactive oxygen species (ROS) levels in A549 and H1299 cells, and N-acetyl-L-cysteine (NAC), a scavenger of ROS, remarkably inhibited the cell death, and the activation of NF-κB and the NLRP3 inflammasome in PPVI-treated A549 and H1299 cells. Taken together, these data suggested that PPVI-induced, caspase-1-mediated pyroptosis via the induction of the ROS/NF-κB/NLRP3/GSDMD signal axis in NSCLC, which further clarified the mechanism of PPVI in the inhibition of NSCLC, and thereby provided a possibility for PPVI to serve as a novel therapeutic agent for NSCLC in the future.

19.
Phytomedicine ; 65: 153088, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31627105

RESUMO

BACKGROUND: Emerging evidences indicate the important roles of autophagy in anti-oxidative stress, which is closely associated with cancer, aging and neurodegeneration. OBJECTIVE: In the current study, we aimed to identify autophagy inducers with potent anti-oxidative effect from traditional Chinese medicines (TCMs) in PC-12 cells and C. elegans. METHODS: The autophagy inducers were extensively screened in our herbal extracts library by using the stable RFP-GFP-LC3 U87 cells. The components with autophagic induction effect in Trillium tschonoskii Maxim. (TTM) was isolated and identified by using the autophagic activity-guided column chromatography and Pre-HPLC technologies, and MS and NMR spectroscopic analysis, respectively. The anti-oxidative effect of the isolated autophagy inducers was evaluated in H2O2-induced PC-12 cells and C. elegans models by measuring the viability of PC-12 cells and C. elegans, with quantitation on the ROS level in vitro and in vivo using H2DCFDA probe. RESULTS: The total ethanol extract of TTM was found to significantly increase the formation of GFP-LC3 puncta in stable RFP-GFP-LC3 U87 cells. One novel steroidal saponin 1-O-[2,3,4-tri-O-acetyl-α-L-rhamnopyranosyl-(1→2)-4-O-acetyl-α-L-arabinopyranosyl]-21-Deoxytrillenogenin, (Deoxytrillenoside CA, DTCA) and one known steroidal saponin 1-O-[2,3,4-tri-O-acetyl-α-L-rhamnopyranosyl-(1→2)-4-O-acetyl-α-L-arabinopyranosyl]-21-O-acetyl-epitrillenogenin (Epitrillenoside CA, ETCA) were isolated, identified and found to have novel autophagic effect. Both DTCA and ETCA could activate autophagy in PC-12 cells via the AMPK/mTOR/p70S6K signaling pathway in an Atg7-dependent. In addition, DTCA and ETCA could increase the cell viability and decrease the intracellular ROS level in H2O2-treated PC-12 cells and C. elegans, and the further study demonstrated that the induced autophagy contributes to their anti-oxidative effect. CONCLUSION: Our current findings not only provide information on the discovery of novel autophagy activators from TTM, but also confirmed the anti-oxidative effect of the components from TTM both in vitro and in vivo.


Assuntos
Antioxidantes/farmacologia , Autofagia/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Dissacaridases/farmacologia , Saponinas/farmacologia , Trillium/química , Animais , Antioxidantes/química , Antioxidantes/isolamento & purificação , Proteína 7 Relacionada à Autofagia/metabolismo , Caenorhabditis elegans/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Dissacaridases/química , Humanos , Peróxido de Hidrogênio/farmacologia , Células PC12 , Extratos Vegetais/química , Ratos , Espécies Reativas de Oxigênio/metabolismo , Saponinas/química , Saponinas/isolamento & purificação , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
20.
Pharmacol Res ; 147: 104396, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31404628

RESUMO

Non-small cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancers. Our previous studies have proven that Trillium tschonoskii Maxim. (TTM), a traditional Chinese medicine, possesses potent anti-tumor effect. However, the detailed components and molecular mechanism of TTM in anti-NSCLC are still unknown. In the present experiment, polyphyllin VI (PPVI) was successfully isolated from TTM with guidance of the anti-proliferative effect in A549 cells, and the cell death of PPVI treated A549 and H1299 cells was closely linked with the increased intracellular ROS levels. In addition, PPVI induced apoptosis by promoting the protein expression of Bax/Bcl2, caspase-3 and caspase-9, and activated autophagy by improving LC3 II conversion and GFP-LC3 puncta formation in A549 and H1299 cells. The mechanism study found that the activity of mTOR which regulates cell growth, proliferation and autophagy was significantly suppressed by PPVI. Accordingly, the PI3K/AKT and MEK/ERK pathways positively regulating mTOR were inhibited, and AMPK negatively regulating mTOR was activated. In addition, the downstream of mTOR, ULK1 at Ser 757 which downregulates autophagy was inhibited by PPVI. The apoptotic cell death induced by PPVI was confirmed, and it was significantly suppressed by the overexpression of AKT, ERK and mTOR, and the induced autophagic cell death which was depended on the Atg7 was decreased by the inhibitors, such as LY294002 (LY), Bafilomycin A1 (Baf), Compound C (CC) and SBI-0206965 (SBI). Furthermore, the mTOR signaling pathway was regulated by the increased ROS as the initial signal in A549 and H1299 cells. Finally, the anti-tumor growth activity of PPVI in vivo was validated in A549 bearing athymic nude mice. Taken together, our data have firstly demonstrated that PPVI is the main component in TTM that exerts the anti-proliferative effect by inducing apoptotic and autophagic cell death in NSCLC via the ROS-triggered mTOR signaling pathway, and PPVI may be a promising candidate for the treatment of NSCLC in future.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Saponinas/farmacologia , Saponinas/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Morte Celular Autofágica/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos Nus , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Trillium
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...